
doi: 10.1098/rsta.2000.0643
, 2217-2231358 2000 Phil. Trans. R. Soc. Lond. A

Martina Zitterbart

table lookup−performance routing−High

Email alerting service
 herethe article or click

ofarticle - sign up in the box at the top right-hand corner
Receive free email alerts when new articles cite this

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. Lond. ATo subscribe to

This journal is © 2000 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;358/1773/2217&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/358/1773/2217.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

10.1098/rsta.2000.0643

High-performance routing-table lookup

By Martina Zitterbart

Institute of Operating Systems and Computer Networks,
Technical University of Braunschweig, Bultenweg 74/75,

38196 Braunschweig, Germany (zit@ibr.cs.tu-bs.de)

The dramatic performance increase observed in the Internet over the last couple of
years requires considerably enhanced router technology in order to provide the view
of an e¯ cient global network to applications and users. Improvements are needed
with respect to data rate but also considering router functionality, for example, to
support Quality of Service for multimedia applications. This paper gives a brief
overview of some aspects related to router design in general and to route lookup
in more detail. Several actual approaches to increase route lookup performance are
introduced.

Keywords: IP routing; routing-table lookup; routing tries;
binary search; caches; identi¯er lookup

1. Introduction

The Internet forms the central part of the information society thanks to the appear-
ance of the World Wide Web. With the advent of the Web, the Internet entered the
private living room and forms a widely open space for electronic commerce and other
applications. It is no longer a toy of research groups. The logical consequence of the
wide acceptance of the Internet is a dramatic increase in number of Internet users
and in tra¯ c introduced into the global Internet. Consequently, the performance of
the Internet itself needs to improve. During the last few years a dramatic increase in
network speed has been observed from data rates in the range of megabits per sec-
ond to data rates of multiple gigabits per second. The limits of optical transmission,
however, have hardly been approached.

In addition to the pure transmission data rate, additional requirements, for exam-
ple, with respect to Quality of Service (QoS), are raised for emerging multimedia
applications. Timely delivery of audio and video data is important as well as the
synchronization among di¬erent data streams. Furthermore, group communication
forms an inherent requirement of applications, such as video conferencing, distributed
team work and distance learning. Many di¬erent aspects of group communication
exist (cf. Wittmann & Zitterbart 2000) including new requirements on router design
and implementation, for example with respect to routing-table lookup.

Generally, the developments outlined above impose increased requirements for the
network internal interworking units that are responsible for forwarding data units
through the network. Consequently, Internet routers (IP routers) are of particu-
lar interest. They are considered throughout this paper. High-performance Internet
routers are extremely important for the future development of global networking

Phil. Trans. R. Soc. Lond. A (2000) 358, 2217{2231

2217

c® 2000 The Royal Society

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

2218 M. Zitterbart

(Metz 1998; Partridge 1998). This is a market opportunity that has been addressed
by numerous startups that develop gigabit and terabit routers.

Forwarding data towards their destination(s) can be considered as the main task
of today’s routers. The corresponding functions form the so-called forwarding engine
which is associated among others with lookup functions to the routing table. The
routing table stores the information needed in order to correctly forward data towards
the next hop on their journey to the nal destination(s). For each data unit|or at
least for each data stream|a lookup in the routing table is needed in order to deter-
mine the next hop. This lookup operation is a central component of data forward-
ing. Other functions with considerably low complexity, such as time-to-live (TTL)
update and checksumming need to be performed as well. An additional requirement
on routers that has established itself during the last few years is the need for rewalls.

Various lookup algorithms have been developed recently that have led to consider-
able performance improvements. Important factors with respect to performance are
key length for memory access, amount of memory required, number of search steps,
as well as cost to generate and update the data structure. The developments con-
sider software implementations as well as hardware implementations. An overview
of current algorithms forms the core of this paper along with some evaluation.

The paper is structured as follows. Section 2 brie®y introduces general architectural
issues related to Internet routers and identi es the main building blocks. Routing-
table lookup is outlined in its basics. A survey on current algorithms for routing-table
lookup is presented in x 3. Internet routers in the advent of QoS requirements are
brie®y discussed in x 4. Section 5 summarizes and concludes the paper.

2. Internet router

Before going into the details of routing-table lookup, the general structure and build-
ing blocks of Internet routers are discussed within this section. Intentionally, no
implementation concepts are introduced here. Instead, it is intended to provide a
very brief overview over the general functions that need to be implemented in such a
router. The only task that is outlined more in detail is the routing-table lookup, since
it is very performance critical. Consider the following very simple example. Using
data units of length 1000 bits each on a network link with a data rate of 1 Gbit s¡1

results in the requirement of 1 million routing-table lookups for that interface. This
clearly requires e¯ cient and de-centralized solutions for high-end Internet routers
in the backbone. With respect to performance requirements, di¬erent routers can
be distinguished: access router, enterprise router and backbone router (Keshav &
Sharma 1998). An access router provides access to Internet Service Providers (ISPs)
for homes or small ō ces and, thus, serves a very small number of nodes. Enterprise
routers, in contrast, interconnect multiple thousand computers in a campus or an
enterprise. Backbone routers typically link ISPs and enterprise networks. Routing at
high speeds between a considerably low number of ports is the main requirement for
backbone routers. Low cost per port and the provisioning of a large number of ports
is important for enterprise routers.

(a) Generic router architecture

In a very simplistic view, a router consists of various network interfaces, a pro-
cessing component and an interconnection unit among the interfaces. As an inter-

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

High-performance routing-table lookup 2219

routing
engine

inbound

traffic

forwarding engine

routing
table

resource
management

engine

classi-
fication

route
lookup

IP
processing

outbound

traffic

update

lookup

Figure 1. Major building blocks of router processing component.

connection unit, nowadays, switches are typically used. With respect to processing,
two very di¬erent tasks need to be distinguished, namely, processing that is involved
in the data path through the router and processing with respect to control tasks
(e.g. routing protocol and network management). Clearly, the data path needs to
be implemented highly e¯ ciently, whereas the control path can be satis ed with
a somewhat lower performance. In order to gain e¯ ciency, some tasks involved in
the data ®ow may be distributed onto the network interfaces allowing for parallel
processing. The major building blocks of the processing component are depicted in
 gure 1. These are

(i) a forwarding engine;

(ii) a routing engine;

(iii) a routing table; and

(iv) a resource management engine.

Figure 1 shows the data ®ow being associated with the data path, i.e. incoming
data units pass the forwarding engine in order to reach the outbound interface(s).
The forwarding engine comprises tasks that need to be implemented highly e¯ ciently
and cost e¬ectively. Therefore, it is advisable to implement some of the components
distributed on the network interfaces, for example to allow for parallel IP processing.
Since the subject of this paper is not router architectures but routing-table lookup,
the reader is referred to Koufopavlou et al. (1994) for the discussion of architectural
issues. A highly distributed router architecture with various hardware components
is presented in Tantawy & Zitterbart (1992), and Partridge et al. (1998) presents an
implementation of a gigabit router.

The forwarding engine primarily comprises IP processing, routing-table lookup,
packet classi cation and scheduling, each being performance critical. IP processing
includes functions such as address check, TTL check and checksumming. Classi ca-
tion is needed in order to classify the data unit corresponding to the requested QoS
level. The data are then forwarded to the respective outbound queue, where they
are scheduled accordingly. Routing-table lookup is needed in order to determine the

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

2220 M. Zitterbart

outbound interface(s) to which the data need to be forwarded. Therefore, the best
matching entry in the routing table must be identi ed. This task is extremely per-
formance critical since it may require multiple memory accesses and, thus, will be
considered in further detail within this paper.

The routing engine and the resource management engine both belong to the control
path and, thus, are not primarily performance critical with respect to the forward-
ing performance of routers. The routing engine comprises routing protocols which
determine updates to the lookup table if required. The routing engine may simply
be implemented on a general purpose processor as suggested in Koufopavlou et al.
(1994). The resource management engine is needed for the provisioning of QoS. It
simply decides how a data unit is treated in comparison with data units belonging
to di¬erent data ®ows. The resource management entity, for example, decides into
which outgoing queue the data unit is forwarded and which form of scheduling will
be applied to it.

(b) Internet routing-table lookup

The central task of a router is to determine the outbound network interface(s)
for data ®owing through it, i.e. to determine the next hop of a data unit. The
required information is stored in the routing table. In order to be scalable for large
networks, Internet routing tables do not store complete IP addresses; they keep
address pre xes. For example, the following addresses can be represented by the
pre x 1001: 100101110¤, 100100101¤ and 100111110¤, where ¤ represents the rest
of the IP address. Using pre xes reduces the size of routing tables considerably.
However, more complex lookup algorithms are needed since the longest matching
pre¯x needs to be identi ed.

The basic rule behind the longest-pre x match is to select the longest pre x that
matches the IP address under consideration. For example, consider a routing table
with the following entries.

100

110

1101

110110

1101000

If a data unit is received with an IP address 1101101¤, the longest pre x for this
address needs to be identi ed. In this example, 110110 will be selected as longest
matching pre x. It is most speci c for the IP address under consideration. Other
valid pre xes with shorter length are 110 and 1101.

At rst, Internet addresses were clearly structured into three distinct classes:
class A, class B and class C with 1, 2 and 3 bytes of network identi cation, respec-
tively. As a result, pre xes of three di¬erent lengths (8, 16, 24) were of interest for
so-called class-based routing. Nowadays, this clear distinction cannot be applied for
Internet routing. As a result, pre xes of all lengths need to be considered and, thus,
lookup is more complex since a variety of pre x lengths may co-exist within a routing
table.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

High-performance routing-table lookup 2221

Due to the growth of the Internet in general, the size of the routing table has
increased as well. Especially, backbone routers can easily end up with several thou-
sand routing entries. This clearly requires clever search algorithms that bound the
worst-case search time within the routing table. Furthermore, these algorithms need
to take into consideration that multiple entries in the table may match and that
the longest pre x among these entries is required. In Srinivasan & Varghese (1998),
table sizes of backbone routers with 45 000 entries or more are reported with pre-
 x lengths being distributed between 8 and 32. Enterprise routers typically have
smaller tables with about 1000 entries. This is due to a high number of default
routes being used. The Internet Performance Measurement and Analysis projecty
provides realistic routing tables that can be used to determine the performance of
lookup algorithms.

Currently, IP addresses are 32 bit long; the new version of the IP protocol (IPv6)
uses addresses with 128 bit and also applies longest matching pre x. As a result of the
increased address length, routing-table sizes will also grow, i.e. e¯ cient routing-table
lookup becomes even more important.

Lookup operations are more frequently applied compared with update operations.
In the case of stable routes, updates should occur rather infrequently. However,
in Labovitz et al. (1997) it is stated that updates can occur up to 100 times per
second. Clearly, such situations also require adequate update algorithms. However,
the requirements for lookups are in the order of few hundred nanoseconds or below
per lookup.

Critical parameters with respect to routing-table lookup are memory access speed
and memory access width. Others of interest include the amount of memory needed
to store the routing table as well as the cost of updates in the data structure. The
following section outlines some algorithms for routing-table lookup, including tra-
ditional solutions as well as recent algorithms that have been developed during the
last couple of years.

3. Routing-table lookup algorithms

Algorithms for routing-table lookup can be classi ed according to various criteria.
In the following discussion they are basically subdivided into software-based and
hardware-based solutions and into those that exploit caching.

(a) Software-based approaches

(i) Trie-based algorithms

Search algorithms are often based on tree structures. With long key words, how-
ever, trees might become ine¯ cient, since a comparison is involved at each node
within the tree (cf. gure 2a). In such cases, often so-called tries are applied. In
tries, search keys are stored in the leaves of the tree only and not within internal
nodes of the tree (cf. gure 2b). This way, only one comparison per search is needed.
The name `trie’ is derived from `retrieval’, since the structure can very well be used
for the retrieval of information. For the traversal of the trie, the bits of the search key
are used until a leaf is reached. Then, the comparison with the word stored in the

y See http://www.merit.edu/ipma.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://www.merit.edu/ipma.
http://rsta.royalsocietypublishing.org/

2222 M. Zitterbart

CA

D

R

C

A

D
R

(b) (a)

A 0001

R 1011

D 0100

C 0011

Figure 2. Examples of (a) a tree and (b) a trie.

leaf takes place. The rst three bits of the key word `C’ are 001. Traversal through
the trie is to the left in case of a 0 and to the right in case of a 1. Routing-table
lookup is typically based on tries.

The Patricia trie algorithm (Knuth 1973) can be seen as a traditional way of imple-
menting Internet routing-table lookup as it is, for example, used with Unix platforms
(Wright & Stevens 1995). Patricia stands for `Practical Algorithm to Retrieve Infor-
mation Coded in Alphanumeric’. A trie generally can be seen as a data structure
for representing strings. The value of a string corresponds to the path taken through
the trie. The Patricia trie is a binary trie, i.e. only the values 0 and 1 are valid.
Furthermore, as an optimization step path compression is applied. Path compression
refers to the fact that internal nodes with only a single child are removed and the
length of the skipped path is remembered in that node (the so-called skip value). As
a result, the Patricia trie algorithm does not search for an exact match, but for a
pre x. In gure 3 a simple example of path compression is depicted, where the paths
to the nodes 1 and 4 are compressed. Tries may lead to high memory consump-
tion since a set of children pointers and the skip value are stored at each internal
node. Furthermore, the skipped bits in the path may require backtracking. Various
approaches have been presented in order to improve the traditional Patricia trie, e.g.
with respect to search time and memory consumption.

The path compression used for constructing a Patricia trie applies to sparsely pop-
ulated areas of the trie. Level compression, in contrast, addresses highly populated
areas of the trie. With level compression, each complete subtree of height h collapses
to a subtree of height 1 with up to 2h children (Cheung & McCanne 1999). Thus, a
level compressed trie is no longer a binary trie but a multibit trie. In the example
shown in gure 3, a subtree of height h = 3 is collapsed.

The LC trie proposed in Nilsson & Karlsson (1998, 1999) enhances a Patricia trie
with level compression. They then address the space problem of tries by de ning a
compact representation without requiring multiple children pointers at each node.
The children of a node are simply stored in consecutive memory locations. As a
result, only a single pointer to the leftmost child is needed in a node. Additionally,
the nodes are stored in a contiguous array. Consequently, the trie only requires some
100 kbits of memory. The leaves of the trie point to a so-called base vector that
contains the complete strings. It has to be checked whether the found match is a
real match (because of path compression). Furthermore, in case of a hit, the next
hop is identi ed by a corresponding pointer in the base vector. If the search was
not successful, a pointer to the pre x table is followed. The pre x table contains

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

High-performance routing-table lookup 2223

1 2 3

4

5 6

1

2 3

4

5 6

1 2 3

4

5 6

path
compression

level
compression

skip = 2skip = 1

Figure 3. Path and level compression in tries.

information about proper pre xes of other strings. This is needed because internal
nodes of the LC trie do not have pointers to the base vector and a path in the
trie may contain more than one pre x. Experiments of the authors came up with a
typical trie depth of 6. With respect to table lookups, about 2 million lookups per
second could be achieved. Due to the construction of the data structure representing
the trie, update operations can easily become very costly.

So-called generalized level compressed tries are introduced in Cheung & McCanne
(1999). They are based on techniques presented in Degermark et al. (1997) and
Nilsson & Karlsson (1998), trie completion and level compression, respectively. With
the technique of trie completion, it is ensured that each node either has no or two
children and backtracking is avoided. Then, level compression is applied in order
to provide for an implementation using lookup tables each with length h. In this
context, pre x expansion is applied in order to limit the number of di¬erent pre x
lengths. For example the pre xes f00; 10; 1g are expanded to f00; 01; 10; 11g, in order
to determine the generalized level compressed trie. The step of level compression
and pre x expansion is formulated as an optimization problem with the goal of
minimizing the average lookup time. An optimal and an approximate algorithm
have been developed, based on dynamic programming (Cormen et al. 1990) and on
Lagrange approximation, respectively. With Lagrange approximation, roughly 1.5
million lookups per second can be achieved at the cost of high memory consumption.

In Srinivasan & Varghese (1998), an approach is presented that, in contrast to most
other approaches, speci cally addresses routing-table updates. Moreover, a `frame-
work’ has been designed that can be tuned to di¬erent requirements, e.g. for backbone

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

2224 M. Zitterbart

routers or enterprise routers. Three techniques are used: controlled pre x expansion,
selecting optimal expansion levels and local restructuring.

In addition to the trie completion mentioned above, controlled pre¯x expansion
restricts the pre x lengths to a prede ned set of length. Since the expansion may
lead to pre x collisions, i.e. an expanded pre x can match an already existing pre x,
so-called pre x capturing is used that removes the expanded pre x. Selection of
pre x lengths is optimized with respect to minimize storage requirements. Dynamic
programming is used for that optimization problem. In addition, local restructuring
of the trie is used to further improve storage consumption.

(ii) Approaches using binary search

The approach presented in Waldvogel et al. (1997) is based on binary search over
hashing tables. The basic idea is that hashing is applied for each pre x length. Binary
search is used to reduce the number of searches from linear to logarithmic and,
additionally, pre-computing is used to prevent backtracking in case of failures in the
binary search. A hashing table is needed for each possible length of the pre x, i.e.
32 hashing tables are required. The search within the di¬erent pre x lengths, i.e.
the associated hashing tables, is organized as a binary search and starts with the
root of the binary tree being located at the median length of pre xes. As a result,
this corresponds to binary search on trie levels (cf. gure 4). This way, the rst step
tries to match the rst 16 bits of the IP address. In case of a failure, it is searched
for a shorter match, in case of a hit for a longer match in the corresponding part
of the tree. Markers in the binary tree are needed to direct binary search in order
to nd longer pre xes. For example, if the pre xes P 1 = 0, P 2 = 00 and P 3 = 111
are available, the search would start at P 2 = 00 and fail. A marker is needed that
indicates that there might be a longer matching pre x. In the example, a marker
entry M = 11 is added into the hash table. The algorithm is simple in the case of
lookup, and well performing. About 1{2 million lookups per second can be achieved.
However, updates can be costly since recomputation of markers may be required.

Binary search on pre¯xes (Lampson et al. 1998) is also based on binary search,
but to the number of pre xes and not on trie levels as in Waldvogel et al. (1997).
Since binary search can not be applied to variable length strings, the pre xes need
to be expanded to a homogeneous length. In this sense, a pre x does not represent a
single value but a range of values (lowest to largest expanded pre x). For example,
with 6 bit addresses, the pre x 1¤ refers to the range of addresses from 100000 to
111111 and is represented by these two values. The expanded pre xes are, then,
sorted. It should be noted that the ranges are nested (cf. gure 5). If binary search
ends at a certain point in the table, the corresponding pre x is the rst low value
(L) in the preceding part of the table that is not followed by a high value (H) (cf.
 gure 5). The longest matching pre x problem is, thus, translated to nding the
narrowest enclosing range. The pre xes for every region can be pre-computed in
order to increase lookup performance at the cost of lowering update performance.
Furthermore, the usage of an array as front end into the binary search can increase
performance. The front end can store pre-computed pre xes, for example, for the rst
16 bits along with pointers to binary search tables that comprise longer pre x values.
According to measurement results, a worst case performance of around 2 million
lookups per second can be achieved.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

High-performance routing-table lookup 2225

binary search trie structure

increasing
prefix
length

Figure 4. Binary search on trie levels (Waldvogel et al . 1997).

100 000 low

101 000 low

101 111 high

111 111 high

L

L

L

L

H

H

L

L , H

H

H

H

prefix

result binary search

Figure 5. Encoding pre¯xes as ranges of low and high values (Lampson et al. 1998).

Additionally, multiway and multicolumn searches are introduced in Lampson et
al. (1998). The basic idea of multiway search is to exploit the cache line of today’s
processors. Within a burst, a so-called search node with multiple entries is loaded into
the cache. This reduces access time for subsequent accesses to the additionally loaded
entries signi cantly. The number of entries in a search node is in accordance with
the cache line. Restructuring of the data is necessary in order to provide locality of
access. Multicolumn search addresses the problem of long identi ers compared with
the word length of the processor (e.g. IPv6 addresses). The identi ers are subdivided
into N components and, for each component, binary search is applied until a hit is
found. Then binary search to the next column is applied and so on. Around 1 million
lookups per second were measured for IPv6 addresses.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

2226 M. Zitterbart

...
2161

chunk

level 1

level 2

level 3

16 bit

24 bit

32 bit

bit vector

Figure 6. Trie with chunks (Degermark et al. 1997).

(b) Exploit caching

Besides the design of clever algorithms for applying trie-based search, binary search
or hashing to improve route lookup, the compaction of the routing table plays an
important role. The goal is to keep the routing table in cache and, thus, to signi -
cantly lower access time.

A tricky approach with a rather complex data structure for compaction of the
routing table and for minimizing memory access is described in Degermark et al.
(1997). A key to this approach is the compact representation of tries of height h.
The initial data structure is a trie to which trie completion is applied. Three levels
are distinguished in the trie: level 1 being bound at depth 16, level 2 being bound at
depth 24 and level 3 being bound at depth 32 (cf. gure 6). Searching in a level can
result in a hit and, thus, an index into the next hop table, or in a miss and, thus, an
index into an array of chunks of the next level. A chunk is a subtree of height 8. At
level 16, a bit vector is introduced with one bit for each possible node at this level,
i.e. with 216 bits. The bit indicates

(1) whether the pre x tree continues below this level;

(2) whether a node at this level corresponds to a pre x; or

(3) whether the trie has a leaf at a depth less than 16.

In the rst case, an index to an array of chunks of the next level is required. In
cases 2 and 3, an index to the next hop table needs to be associated with the bit. The
arrays of chunks are based on a compact representation. The chunks of level 2 and
3 are handled the same way as in level 1 if they are densely populated. Otherwise,
a less complex solution is applied that basically scans the nodes linearly. With this
algorithm ve memory accesses are needed per 16 bits of the address. In software,
a lookup performance of about 2 million lookups per second is reported, provided
that the forwarding table is located in the secondary cache. The algorithm has not
been further investigated with respect to IPv6. At rst glance it appears that either
the levels to be distinguished need to grow or the size of the bit vector and code
words increases. Update operations are not described further within the available
documents. They, however, may require the complete re-construction of all vectors,
arrays and tables.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

High-performance routing-table lookup 2227

A di¬erent approach on exploiting caching for route lookup maps IP addresses
to virtual memory addresses (Chiueh & Pradhan 1999). In order to reduce virtual
address space consumption, only a xed-length portion of the IP address is mapped
to a virtual address. The remaining bits need to be checked separately without the
advantage of caching. A so-called host address cache with the most recently used IP
addresses resides in the level 1 cache. A portion of the level 1 cache is reserved for
this. In addition, the destination network address table exists which is needed in case
of cache misses. In the design of that table, size is traded for lookup performance. As
already seen in other approaches, the table is subdivided into three levels correspond-
ing to the rst 16 bit and two subsequent strides of 8 bit. The performance can be
as high as 90 million lookups per second, if the host address cache is used optimally.
Without this assumption, around 30 million lookups per second are reported.

(c) Hardware-based approaches

The advantage of hardware-based approaches is that they may achieve higher
performance due to the application of dedicated circuits and specialized memory
organization compared with pure software-based solutions. However, the develop-
ment of these circuits pays o¬ only if a large quantity is installed in routers and,
thus, prices are low. Some issues on hardware-based routing tables are discussed in
Pei & Zukowski (1992).

(i) Table lookup with CAMs

The algorithms discussed above basically use di¬erent types of RAM (random
access memory) to store entries of the routing table. CAMs (content addressable
memory) appear to be an attractive alternative for hardware-based implementations
of Internet routing-table lookup. In the case of RAM, an address is given to the
memory, and the content of the corresponding memory is returned. With CAMs,
the content is provided and the address where the content is stored is returned. The
search requires one cycle only, since parallelism is applied for the search within a
CAM. This makes CAMs especially suited for search purposes such as table lookups.

The routing tables in McAuley & Francis (1993) and Tantawy & Zitterbart (1992)
were designed around a (potentially large) number of CAM modules. Such a solution
is attractive with respect to the search task. However, the dynamics of routing tables
make their usage somewhat di¯ cult, since the addition or update of routing-table
entries with CAMs cannot be easily implemented with high performance. CAMs
are specialized to high-performance searching only. Moreover, a di¬erent physical
entry of a single IP address is required for each subnet mask that is used. Basically,
CAMs are speci cally suited for the detection of xed-length patterns. Moreover, a
CAM usually provides only one search mask for all entries. In the context of the
Internet this does not apply to routing-table lookup due to variable length pre xes
and, consequently, numerous CAMs may be needed. Furthermore, it needs to be
stressed that today’s CAMs are somewhat small and very expensive compared with
conventional and enhanced dynamic or static memory. However, it also needs to be
mentioned that some vendors appear to have developed specialized CAMs suited for
IP routing-table lookup.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

2228 M. Zitterbart

(ii) Specialized route lookup hardware

A general alternative to the usage of CAMs can be seen in the development of
specialized hardware solutions that address the speci c characteristics of Internet
routing-table lookup. They build upon the algorithms presented above.

The approach presented in Gupta et al. (1998) is a straightforward implementation
using few distinct pre x lengths in hardware. The goal is to implement lookup with a
high probability with a single memory access. In order to support this, pipelining is
introduced. Memory is traded in favour of performance. This is driven by monetary
costs and not by access costs (e.g. dynamic random access memory (DRAM) com-
pared with cache). The basic idea of Gupta et al. (1998) is to provide large DRAM in
which tables corresponding to dedicated pre x lengths are implemented. Since pre-
 xes of length 24 or below represent the majority of used pre xes, all these pre xes
are represented in a single table, which provides an entry for each pre x. Conse-
quently, in most cases, the pre x can be identi ed with a single memory access. All
pre xes that are longer than 24 bits are stored in a separate table. In case no hit was
found in the rst table, an index to this second table is provided that is combined
with the remaining 8 bits of the address. The achieved lookup performance allows
for about 20 million lookups per second when pipelining is applied. In contrast to
many other approaches, updates are not very costly. The performance can further
be improved if additional `intermediate’ tables are added and more pipeline stages
are applied.

Re nements of Gupta et al. (1998) are presented in Huang et al. (1999), especially
with respect to memory consumption. Instead of several Mbytes, only about 500
Kbytes of memory are needed and, thus, the usage of static random access memory
(SRAM) is feasible. Lookup performance is increased to about 100 million lookups
per second with pipelining and proper SRAMs. The di¬erence from Gupta et al.
(1998) is mainly based on a di¬erent usage of pre x lengths. The length of 16 bits
instead of 24 bits is used for the basic table. Each lookup in this table either results
in a pointer to the next hop in case of a hit or in a pointer to the associated next hop
array with 216 entries each. Huang et al. (1999) introduce variable o¬set lengths to the
construction of the next hop array to reduce memory consumption by taking pre x
length distribution into account. The table can be compressed to further reduce
memory consumption. In the worst case, three memory accesses are needed for a
single lookup. The resulting table is small enough to t into SRAM, whereas the
table produced in Gupta et al. (1998) is huge and can only be implemented in
DRAM.

The basic data structure applied in Moestedt & Sj�odin (1998) is based on a pre x
trie with a few di¬erent levels (i.e. pre x lengths) being distinguished. Each node in
the trie represents a pre x. Pre x expansion needs to be applied in order to convert
pre xes to the prede ned levels. The trie is completed by nodes that mark currently
invalid pre xes. For an easy implementation in hardware, the trie is implemented
as a linked list of di¬erent tables, each of them representing a pre x length. The IP
address is subdivided in accordance with the pre x lengths supported in the pre x
trie. The most signi cant bits are used to index the rst table. In case of a hit, the
entry points to the next hop table. In case of a miss, a pointer to the next table can
be found. Pipelining can be applied which enables one lookup per memory cycle.
Lookup rates of up to 50 million lookups per second can be achieved.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

High-performance routing-table lookup 2229

Subdividing the IP address into portions is also proposed in Zitterbart et al. (1997).
Each node within a binary tree represents a part of the address and the corresponding
portion of the subnet mask is associated with that node. The approach reduces the
amount of memory needed to store the routing table, since parts of the tree may be
shared by di¬erent addresses. Furthermore, due to the subdivision of the IP address,
pipelining can be applied to increase performance. Moreover, the approach is not
tight to pre x search only. Subnet masks could be selected independent of the pre x
issue. With this approach, search speed nearly compares with memory speed. A
performance of 10 million search steps per second is feasible with comparable slow
SRAMs with 70 ns access time.

4. Identi¯er lookup

The previous section concentrated on pre x lookup for IP addresses. Due to addi-
tional functions located in IP routers, such as classi cation in order to support QoS
requirements or multicast communication, routers may need to look up various other
 elds in order to identify a data ®ow consisting of the data exchanged between two
or more application entities. Moestedt & Sj�odin (1998) summarize all these examples
as identi¯er lookup in contrast to address lookup, as discussed in x 3. The general
di¬erence between an identi er and an address is the hierarchical structure, which is
only present in addresses, not in identi ers. Thus, identi ers do have a xed length
that needs to be investigated in contrast to variable length pre xes of addresses.
Other applications of identi er lookup are multi-protocol label switching (MPLS)
and layer 4 switching.

As depicted in gure 1, packet classi cation is another functionality that is located
in the forwarding engine and, thus, may form a potential performance bottleneck.
The complexity of classi cation depends on the number of elds that need to be
considered. If RSVP (Braden 1997) is used as resource reservation protocol, various
 elds in the header need to be analysed, e.g. source and destination IP addresses as
well as source and destination UDP ports. If IPv6 is used, a speci c ®ow label eld
is su¯ cient to be investigated. In Nilsson & Karlsson (1999), it is argued that two
pointers can simply be used to traverse the LC-trie, one for the source address and
one for the destination address. Both addresses can be looked up in parallel. Hashing
is proposed for the other elds (e.g. TOS eld, UDP and TCP ports) since they have
 xed length.

The situation becomes less complex if di¬erentiated services as they are currently
proposed in the IETF are used. Simply the per-hop behaviour (PHB) needs to be
analysed for classi cation purposes. For trā c management purposes a lookup of the
source address might also be required.

An increasingly important issue is the lookup of multicast IP addresses. Pre x
search cannot be applied since they do not provide a pre x. The same holds for
anycast addresses introduced by IPv6. In Nilsson & Karlsson (1999), however, it
is suggested to view multicast IP addresses as pre xes of 32 bit length. Another
di¬erence to unicast addresses is the fact that multiple next-hop pointers may be
associated with a single multicast address. A hardware-based approach for identi er
lookup is proposed in Moestedt & Sj�odin (1998). It simply uses various hash tables
and hash functions in parallel with the restriction that an identi er can be at most
located in one hash table.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

2230 M. Zitterbart

5. Summary and outlook

A brief introduction into the basic building blocks of a router has been presented.
The main focus of the discussion was on routing-table lookup since it may consid-
erably limit router performance. Especially, the number of memory accesses, as well
as the amount of memory needed, are important design criteria. Several algorithms
for e¯ cient routing-table lookup were presented: software-based and hardware-based
approaches as well as approaches exploiting cache technology. With these new algo-
rithms that have been developed over the last few years, an important performance
boost can be observed. This may reduce the necessity of other approaches, such as
IP switching and MPLS. Highly e¯ cient routing-table lookup can be implemented in
various ways. Software implementations provide more ®exibility. On the other hand,
with hardware implementations, memory can be organized according to the speci c
requirements. Moreover, even with cheap DRAM technology, high performance can
be achieved with the requirement of large memory sizes.

Besides increasing the performance of the forwarding engine for backbone and
enterprise routers, introducing application service provisioning into routers is cur-
rently discussed. This may lead to so-called programmable or active networks. Con-
siderable changes in router design may be needed to support this direction, espe-
cially considering the operating system as well as the application programming inter-
face (API). The main di¬erence introduced with these technologies can be seen in
the fact that service provisioning and router design and deployment are no longer
tight together. So-called rapid service creation is supported, which provides dynamic
deployment of services at strategic points in the network. Programs to be executed for
service provisioning can either be downloaded into the router in advance or carried
with the data units during data transfer.

References

Braden, R. (ed.) 1997 Resource ReserVation Protocol. Version 1: functional speci¯cation.
RFC 2205.

Cheung, G. & McCanne, S. 1999 Optimal routing table design for IP address lookups under
memory constraints. In IEEE Infocom ’99, pp. 1437{1444.

Chiueh, T. & Pradhan, P. 1999 High-performance IP routing table lookup using CPU caching.
In IEEE Infocom ’99, pp. 1421{1428.

Cormen, T., Leiserson, C. & Rivest, R. 1990 Introduction to algorithms. McGraw-Hill.

Degermark, M., Brodnik, A., Carlsson, S. & Pink, S. 1997 Small forwarding tables for fast
routing lookups. In ACM SIGCOMM ’97, Cannes, France, September 1997, pp. 3{14.

Gupta, P., Lin, S. & McKeown, N. 1998 Routing lookups in hardware at memory access speed.
In IEEE Infocom ’98, pp. 1240{1247.

Huang, N., Zhao, S., Pan, J. & Su, C. 1999 A fast IP routing lookup scheme for gigabit switching
routers. In IEEE Infocom ’99, pp. 1429{1436.

Keshav, S. & Sharma, R. 1998 Issues and trends in router design. IEEE Commun. Mag. 36,
144{151.

Knuth, D. 1973 The art of computer programming, vol. 3, Sorting and searching. Addison-Wesley.

Koufopavlou, O., Tantawy, A. & Zitterbart, M. 1994 A comparison of gigabit router architec-
tures. J. High Speed Networks 3, 209{232.

Labovitz, C., Malan, G. & Jahanian, F. 1997 Internet routing instability. In ACM SIGCOMM
’97, Cannes, France, September 1997.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0163-6804^28^2936L.144[aid=541215,doi=10.1109/35.668285]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0926-6801^28^293L.209[aid=541216,csa=0926-6801^26vol=3^26iss=3^26firstpage=209]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0163-6804^28^2936L.144[aid=541215,doi=10.1109/35.668285]
http://rsta.royalsocietypublishing.org/

High-performance routing-table lookup 2231

Lampson, B., Srinivasan, V. & Varghese, G. 1998 IP lookups using multiway and multicolumn
search. In IEEE Infocom ’98, pp. 1248{1256.

McAuley, A. & Francis, P. 1993 Fast routing table lookups using CAMs. In IEEE Infocom ’93,
San Francisco, pp. 1382{1391.

Metz, C. 1998 IP routers: new tool for gigabit networking. In IEEE Internet Computing, Novem-
ber/December 1998, pp. 14{18.

Moestedt, A. & Sj�odin, P. 1998 IP address lookup in hardware for high-speed routing. In Hot
Interconnects, Stanford, CA, USA.

Nilsson, S. & Karlsson, G. 1998 Fast address lookup for internet routers. In IFIP Conf. on
Broadband Communications, Stuttgart, Germany, April 1998, pp. 11{22.

Nilsson, S. & Karlsson, G. 1999 IP-address lookup using LC-tries. IEEE J. Selected Areas Com-
mun. 17, 1083{1092.

Partridge, C. 1998 Designing and building gigabit and terabit Internet routers. In ACM Sigcomm
’98, Vancouver, Canada, September 1998, tutorial 2.

Partridge, C., et al . 1998 A 50 Gb/s IP router. IEEE/ACM Trans. Networking 6, 237{248.

Pei, T. & Zukowski, C. 1992 Putting routing tables in silicon. IEEE Network Mag 6, 42{50.

Srinivasan, V. & Varghese, G. 1998 Fast address lookups using controlled pre¯x expansion. In
ACM Sigmetrics ’98.

Tantawy, A. & Zitterbart, M. 1992 Multiprocessing in high performance IP routers. In IFIP
Workshop on Protocols for High Speed Networks, Stockholm, Sweden, May 1992, pp. 235{254.

Waldvogel, M., Varghese, G., Turner, J. & Plattner, B. 1997 Scalable high speed IP routing
lookups. In ACM Sigcomm ’97, Cannes, France, September 1997, pp. 25{36.

Wittmann, R. & Zitterbart, M. 2000 Multicast|applications and protocols. San Francisco: Mor-
gan Kaufman.

Wright, G. & Stevens, W. 1995 TCP/IP illustrated, vol. 2: The implementation. Addison-Wesley.

Zitterbart, M., Harbaum, T., Meier, D. & Br�okelmann, D. 1997 E± cient routing table lookup for
IPv6. In IEEE Workshop on High Performance Communication Systems, Chalkidiki, Greece,
June 1997, pp. 1{9.

Phil. Trans. R. Soc. Lond. A (2000)

 rsta.royalsocietypublishing.orgDownloaded from

http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0733-8716^28^2917L.1083[aid=541217,doi=10.1109/49.772439]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-6692^28^296L.237[aid=541218,doi=10.1109/90.700888]
http://ernesto.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0733-8716^28^2917L.1083[aid=541217,doi=10.1109/49.772439]
http://rsta.royalsocietypublishing.org/

